SNR Estimation in Linear Systems With Gaussian Matrices
نویسندگان
چکیده
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Quadratic Filtering of non-Gaussian Linear Systems with Random Observation Matrices
In this paper we consider the problem of state estimation for linear discrete-time non-Gaussian systems with random observation matrices. This is the model for systems with observation losses due to propagation through unreliable communication channels. Losses may result from intermittent failures that cause packet dropouts, as in the case of networks, or fading phenomena in propagation channel...
متن کاملBlind SNR Estimation with Coherent Function for OFDM Systems
In OFDM receivers, an accurate signal-to-noise ratio (SNR) estimation is desirable for all sorts of operations involved in highperformance baseband demodulation. In this work, conventional SNR estimation techniques are investigated. Next, a blind SNR estimation scheme for the phase-shift keying (PSK) signals based on the coherence function is proposed. The proposed method is non-data-aided (NDA...
متن کاملEstimation in High - Dimensional Linear Models with Deterministic Design Matrices
Because of the advance in technologies, modern statistical studies often encounter linear models with the number of explanatory variables much larger than the sample size. Estimation and variable selection in these high-dimensional problems with deterministic design points is very different from those in the case of random covariates, due to the identifiability of the high-dimensional regressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2017
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2017.2757398